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I. INTRODUCTION

The present work was undertaken in support of the M864 artillery round
development. This round uses an AP/HTPB propellant in the projectile base to
reduce base drag during flight. Subatmospheric burning rates, simulating
operation at altitudes to 10 km, were desired to enable modeling of the drag
reduction and consequent range enhancement. The propellant acts as a gas

generator reducing the partial vacuum created at the projectile base in
flight. The combustion gases escape the combustion chamber through an

unchoked port in the projectile base. Ground tests of the base-section
combustor in a spin fixture have also been conducted to measure the effects of

spin rate on chamber pressure and combustion time. Similar tests in an
altitude chamber are being planned. Apart from isolating the effects of spin
and pressure on the combustion for modeling purposes, these experiments serve
to trouble-shoot the combustion chamber sensors to be used in a later series
of telemetered gun firings. This report describes only the results of the
vacuum burning rate measurements. The spin tests are reported elsewhere. 1 As
burning rates were the objective of this work, encounters with the low
pressure deflagration limit were more of an experimental obstacle than a

subject for study. Consequently, the data presented below on critical
diameters is sparse. Since relatively little data of its kind appears to be

available in the literature, it is included here.

IT. EXPERIMENTAL PROCEDURES

The burning rate measurements were conducted in a windowed strand burner
modified for vacuum operation. Figure I illustrates the setup schematically.

The samples were burned cigarette fashion with an axial shroud of nitrogen gas
helping to control smoke obscuration and inhibiting flamespread down the sides
of the strand. The gas path is emphasized by the heavy lines in Figure 1. A
constant nitrogen flow during the burn is obtained by maintaining a pressure
of about 0.3 MPa upstream of a choked orifice using a standard pressure
regulator. Flow rate can be selected by changing either the upstream pressure

or the orifice diameter. The orifice itself consists of a sapphire watch
jewel epoxied into a steel disk which is, in turn, conveniently captured in a
Cajon VCO tubing fitting. Use of this type of watch Jewel as a means of
producing calibrated gas flows is discussed in Reference 2. The nitrogen flow
thus produced is introduced to the combustion chamber through the sample mount
which is configured to produce a uniform axial flow around the propellant
strand. The combined nitrogen and combustion gases are drawn out of the top
of the windowed chamber by a vacuum pump, whose suction is modulated by a
vacuum pressure regulator. This regulator was designed and built at BRL for
low pressure flat flame burner studies and is described in detail in Reference

3. Its operation can be understood from the schematic representation of it in
Figure 1. Two opposing cylindrical nozzles, each with perforations on the
tapered ends, are connected by a thin latex membrane (cut from a condom).
This assembly is housed in a larger chamber which can be evacuated and bled
back up to the desired chamber operation pressure, or "set" pressure. When
the pressure in the combustion chamber exceeds the set pressure, the membrane
expands exposing the chamber to suction from the vacuum pump through the
perforations in the nozzles. Wnen the pressure in the chamber falls below the
set pressure, the membrane collapses and covers the perforations, effectively
sealing the chamber off from the vacuum pump. Pressure generated in the
chamber by the burning strand then raises the chamber pressure until the set
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point is reached. In operation the membrane oscillates between these two
modes, providing pressure regulation in the chamber to within a few percent,
as long as the gas generation rate is within limits which depend on the
regulator's design. The regulator performed well for propellant strands with
diameters less than about 8 mm. Since it became necessary to use larger
samples, we attached a large surge tank to the chamber. With this larger
effective chamber volume, pressure would rise slowly in the chamber but
generally less than 10% during the course of a measurement. The pressure
during an experiment is recorded with a digital oscilloscope from the analog
output of a Baratron capacitance manometer. A typical record is shown in
Figure 2.
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DIG ITAL
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HIGH PRESSURE N2
MANIFOLD

Figure 1. Schematic of Vacuum Strand Burner
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Figure 2. Chamber Pressure During Combustion of 11.1 mm Diameter Sample
of AP-2 at 0.36 Bar and with Nitrogen Flow of 2.5 SLPM

Ignition of the propellant strand was accomplished by a resistively
heated wire. At first nickel wire was used because it was readily available
and had worked well with other propellants; however, its use resulted in
frequent ignition failures because it would melt through before the strand was
fully ignited. The use of tungsten wire obviated the ambiguity between
ignition failure and extinguishment because it survived the flame temperatures
and enhanced ignition of the sample by preheating the top end of the strand.
The ignition stimulus was applied for 10 s, and this period was always
excluded from the burning rate determination.

Combustion of the sample was video recorded by a system with both
synchronized electronic strobe and shutter. The camera captures 60 fields per
second and the strobe duration is 10 microseconds, so each field is temporally
sharp. The video system is also equiped with a time code generator and X-Y
coordinate digitizer, enabling almost continuous motion analysis capability.
In practice, the video record for each strand was studied for periods of well-
behaved planar surface regression, and some 20 points in this period were
digitized for analysis. These displacements and times were then least-sqares
fitted to both first and second degree polynomials and the resulting plots
compared. In most cases these two curves were indistinguishable, indicating a
steady regression rate, and the slope of the linear curve accepted as the
burning rate. If the two curves were judged sufficiently distinct, the run
was discarded. The average pressure over the digitizing period was
ascertained from the pressure record and associated with the computed burning
rate.
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III. RESULTS

Two propellant formulations were investigated. The first, designated
AP-1 here, consists principally of 74% (by weight) ammonium perchlorate (AP),
15% hydroxy terminated polybutadiene (HTPB), and 6% oxamide. The AP component
is trimodal, being made up of 40% 200 micron particles, 54% 14 micron
particles, and 6% 7 micron particles. The second formulation, here termed
AP-2, is the same except that 2% iron oxide replaces about 1% of the AP and 1%
of the oxamide. Strands of AP-2 were prepared using cork borers of various
diameters to core actual motor grains. AP-I is a bit less resilient and
tended to split with this method. Square strands of AP-1 were therefore cut
with a heavy knife. Strands of both formulations were typically about 25 mm
in length. AP-1 strands, about 6.4 mm on a side, were prepared and burned
first in a fairly constant laboratory relative humidity of about 40%. No
problems were encountered. AP-2 strands of 6.4 mm diameter, ignited by hot
nickel wires in nitrogen, produced inconsistent results. The laboratory
humidity during this time increased to 80-90%. To control this variable, AP-2
strands were routinely placed in a desicator for several days after
preparation and before firing. A few tests were then done at a later time
with samples conditioned in 100% relative humidity for comparison.

Because of the possibility of air diffusing into the base combustion
section during projectile flight, experiments were done with both nitrogen and
air as a purge gas. Atmospheric concentrations of oxygen are not likely to
exist in the combustor, but the use of air in our strand burning tests would
at least bracket the behavior. AP-1 burned with the same rate in air and
nitrogen. In both gases the flame was a dull red and rather thin optically;
little smoke was produced. In air the flame was slightly brighter and
slightly less smoke was produced. In both gases many incandescent particles
could be seen on the burning surface with no discernible difference due to the
type of purge gas. AP-2 combustion was greatly affected by the use of air or
nitrogen. In air the burning surface assumed a convex shape which became more
pronounced with time, i.e., the burning rate at the edge was faster than at
the center. The burning rate in air was some 25-50% faster than in nitrogen,
depending on which feature one tracked on the strand. This suggested that
oxygen from the purge gas participated in and enhanced the combustion. In air
the flame was very bright and optically thick; little smoke was produced. In
nitrogen the flame was the same dull red as with AP-l, but AP-2 produced
copious amounts of smoke. Glowing particles were noi evident on the burning
surface of AP-2 in either air or nitrogen. In the former case such an
observation could have been prevented by the brightness of the flame and in
the latter by the dense smoke.

The bulk of the effort was spent on AP-2 combustion in nitrogen purge gas
since this propellant formulation is the one in current use and the oxygen
concentration in the projectile combustor is expected to be low. After the
tungsten hot wire was discovered to give reliable ignition, the principal
variable affecting the burn rate (apart from pressure) turned out to be the
strand diameter. The greatest number of runs were performed at about I bar
and the dependence of burning rate on diameter is shown in Figure 3. The data
point at 6.4 mm represents three runs in which self-extinguishment occurred
after successful ignition. In these cases the strand burned a distance of 8-
12 mm before going out, and burning rates measured prior to extinction are
given in Table 1. From these values it can be seen that whatever mechanism is
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responsible for the critical diameter deflagration limit, its effect on the
burning rate is rather abrupt; i.e., if the sample burns at all, it burns at
close to a fixed rate at a given pressure. Table 1 gives all of the data for
AP-2. Although less data is available at lower pressures, it can be seen that
the critical diameter increases as the pressure decreases. The trend is
suggested in Figure 4.

( 1.00- X X

X

5.4O

.200

2.00 8.00 10.0 14.0 19.0
STRAND DIAMETER (mm)

Figure 3. AP-2 Burning Rate vs. Diameter at I Bar

The purge flow rate was varied from 2.5 to 10 standard liters per minute
(SLPM) to determine if it influenced the burning rates. As seen in Table I,
the burning rate was not sensibly affected; however, there is a suggestion
that the extinction diameter increases with increasing flow rate. The
geometry of the sample mount and chamber is such that the purge gas velocity
by the sample is on the order of I cm/s for the above range in flow rates.
Stronger flows might well have a more pronounced effect.

As mentioned previously, humidity was at first thought to be a factor in
the burning rate, so samples were desicated prior to firing. To investigate
this further, two samples were conditioned in a 100% relative humidity
atmosphere for several days. These samples were burned at 0.36 and 1.1 bar.
Surprisingly, no difference in burning rate was measured for these samples
relative to the desicated ones. With the exception that the humid sample
burned with somewhat more smoke, there was no difference in the appearance of
the combustion. Helium pycnometer density measurements on a desicated sample
and one exposed to lab air of >80% relative humidity yielded 1.532 g/cc and
1.718 g/cc, respectively. The higher density of the humid sample seemed to
suggest the presence of microvoids in the propellant to which water molecules
would migrate.
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Table I. Burning Rate Data for AP-2

PRESSURE DIAMETER N2 FLOW TEMPERATURE BURN RATE
(bar) (EM) (slp) (C) (m/s)

1.06 19 10 NR 1.07
1.02 19 10 NR 0.904

1.06 11.1 2.5 24 0.928
1.05 11.1 2.5 22 0.930
1.05 11.1 5 27 0.969

0.95 11.1 5 NR 0.828
1.04 11.1 10 NR 0.885
0.98 11.1 10 NR 0.934

1.04 9.6 5 27 0.868
1.06 Q.6 10 28 0.942
1.06 9.6 10 29 1.018

1.03 8.0 2.5 25 0.862
1.03 8.0 5 24 0.802
1.05 8.0 10 25 0.831

0.94 6.4 5 NR 0.790 X
0.94 6.4 5 NR 0.837 X
0.94 6.4 5 NR 0.773 X

0.691 11.1 2.5 24 0.737
0.698 11.1 2.5 25 0.664

0.661 11.1 5 24 0.700

0.654 9.6 5 25 0.676
0.667 9.6 10 25 0.703 X

0.658 8.0 2.5 25 0.620 X

0.348 11 .1 2.5 24 0.488
0.363 11.1 2.5 23 0.461

0.343 11.1 5 24 0.440
0.333 11.1 5 25 0.450

0.335 9.6 5 25 0.436 X

0.336 8.0 2.5 25 0.417 X

NOTE: Runs marked with an X self-extinguished after burning about a cm.
Burning rates are measured prior to extinction. NR means "not
recorded".
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Figure 4. Critical Diameters for AP-2 Self -Extinguishment

TV. DISCUSSION OF CRITICAL DIANMETER OBSqERVATIONS

Since the matter of critical diameters was incidental to our burning rate

objective, the resulting precision and number of measurements are not optimum

for a discussion of extinction phenomena. However, the measurements can be|

usefully related to previous work in the same vein. A brief literature search

revealed much past discussion of the circumstances and causes of pressure /

deflagration limits for AP and AP propellants but few determinations of the

critical diameter as a function of pressure at the low pressure limit.

The first and most extensive measurements (that we could find) were lone
by Cookson and Fenn4 for AP propellants with a polyester binder. AP loadings

of 797 and 807, were used with particle sizes 25 microns or less and 80 microns -

or less. In that work the pressure at which a square strand of given

dimensimi self-extiiigiishes was determined by igniting the strand at higher

presstires and c-arefully Lowering the pressure until it went out, noting the

pressure ;it which this happened. Reproducibility of a few percent was

reported iising this method. Consistent with our results, they found that

strands ,)t the faster-burning propellant (80% AP) extinguished at a lower

presstire than strands of the same diameter in the slower formulation. Drawing
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a parallel between the heat loss effects leading to critical diameters in
propellant strands and wall effects in flow through conduits, the reciprocal
of the critical diameter (effective diameter for their square strands) was
plotted vs. the corresponding extinguishing pressure. Plotted in this way,
some two dozen data points fell on two straight lines, one for the 80% AP and
one for the 78% AP propellants. The intercept on this plot for strands of
infinite diameter occurred at finite values of pressure, presumed to be "the"
low pressure deflagration limit for one-dimensional combustion. Plotting the
reciprocal of critical diameter from our Figure 4 vs. pressure places the
infinite diameter intercept for our data at negative pressures even taking the
uncertainties of our go/no-go method into account. Neither does our data
closely approximate a straight line, although this could be influenced by the
paucity of data points.

Two possibilities could explain these conflicting findings. One is
simply that the propellant used by Cookson and Fenn behaves differently.
Steinz5 compared burning rates vs. pressures at subatmospheric pressures for a
wide variety of AP propellant binders. Both extinction pressures and pressure
dependences in this range varied greatly among propellants with different
binders. Another possibility is that the two methods of determining the
critical diameter are not equivalent. Park, et al., 6 made a careful study of
the methodology of determining the low pressure deflagration limit. They
found that in general the two methods do give differing values, with the
magnitude of the discrepancy dependent on the binder type. The dynamic
pressure method produced a lower extinguishment pressure than the go/no-go
method for all of their propellants. No explanation for this behavior was
apparent. It is also interesting to note that their critical diameters,
determined by the dynamic method, when plotted as reciprocals vs. pressure did
not fit well on a straight line as found by Cookson and Fenn, and if the best
straight line was drawn, the infinite diameter intercept was at zero pressure,
not a finite value. Thus, while the surface-to-volume ratio is likely to be
an important parameter in the critical diameter extinction phenomenon, its
linear dependence on extinguishing pressure is not an adequate universal
description.

V. SUMMARY

Burning rates of two similar formulations of AP/HTPB propellant were
measured at room temperature over the pressure range 0.35-1 atm. The data for
both is depicted in Figure 5 along with non-linear least-squares fits to power
law functions. It was found that strands with diameters smaller than a
critical value would self-extinguish during burning. This critical diameter
increases with decreasing pressure and probably with increasing purge flow
rate. For a given pressure, the critical diameter is smaller for the
propellant with the faster burning rate. Relative humidity of propellant
storage environments did not affect the burning rate (of AP-2). Future plans
are to measure the pressure dependence of the burning rate to lower pressures
and over a range of ambient temperatures.
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